Planar oxide supported rhodium nanoparticles as model catalysts.

نویسندگان

  • Sean M McClure
  • M J Lundwall
  • D W Goodman
چکیده

C(2)H(4)/CO/H(2) reaction is investigated on Rh/SiO(2) model catalyst surfaces. Kinetic reactivity and infrared spectroscopic measurements are investigated as a function of Rh particle size under near atmospheric reaction conditions. Results show that propionaldehyde turnover frequency (TOF) (CO insertion pathway) exhibits a maximum activity near = 2.5 nm. Polarization modulation infrared reflection absorption spectroscopy under CO and reaction (C(2)H(4)/CO/H(2)) conditions indicate the presence of Rh carbonyl species (Rh(CO)(2), Rh(CO)H) on small Rh particles, whereas larger particles appear resistant to dispersion and carbonyl formation. Combined these observations suggest the observed particle size dependence for propionaldehyde production via CO insertion is driven by two factors: (i) an increase in propionaldehyde formation on undercoordinated Rh sites and (ii) creation of carbonyl hydride species (Rh(CO)H)) on smaller Rh particles, whose presence correlates with the lower activity for propionaldehyde formation for < 2.5 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports.

Metal nanoparticles are commonly supported on metal oxides, but their utility as catalysts is limited by coarsening at high temperatures. Rhodium oxide and rhodium metal nanoparticles on niobate and tantalate supports are anomalously stable. To understand this, the nanoparticle-support interaction was studied by isothermal titration calorimetry (ITC), environmental transmission electron microsc...

متن کامل

Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for t...

متن کامل

Hydrogenation of carbon monoxide over vanadium oxide- promoted rhodium catalysts

The effect of vanadium oxide as support and promoter on supported rhodium catalysts on the CO hydrogenation has been investigated at 0.15 and 4.0 MPa. Rh/V,O, reduced at 723 K has a good selectivity toward oxygenated products, especially C,-oxygenates, but has a low activity added as a promoter to catalysts consisting and stability. Vanadium oxide of rhodium supported on silica and alumina show...

متن کامل

Simulating the Complexities of Heterogeneous Catalysis with Model Systems: Case studies of SiO2 Supported Pt-Group Metals

Model catalyst surfaces, consisting of vapordeposited metal nanoparticles supported on a planar oxide support, can help to link reactivity studies on well-defined single crystal surfaces with those conducted on high-surface area supported catalysts. When coupled with near atmospheric pressure kinetic and spectroscopic techniques, these well-defined model catalyst surfaces represent a useful app...

متن کامل

New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts

An extensive series of supported WO3/ZrOx (OH)4−2x catalysts (WZrOH) were synthesized by standard aqueous impregnation of ammonium metatungstate into an amorphous ZrOx (OH)4−2x metastable support, followed by high-temperature calcination (at 773–1173 K). The supported WZrOH catalysts were also compared with well-defined model supported WO3/ZrO2 catalysts (WZrO2) consisting of a thermally stable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 3  شماره 

صفحات  -

تاریخ انتشار 2011